Abstract

We study the dynamics of a two-dimensional lattice of nonlocally coupled-map-based neuron models represented by Rulkov maps. It is firstly shown that this discrete-time neural network can exhibit spiral and target waves and corresponding chimera states when the control parameters (the coupling strength and the coupling radius) are varied. It is demonstrated that one-core, multicore, and ring-shaped core spiral chimeras can be realized in the network. We also reveal a novel type of chimera structure-a target wave chimera. We explore the transition from spiral wave chimeras to target wave structures when varying the coupling parameters. We report for the first time that the spiral wave regime can be suppressed by applying noise excitations, and the subsequent transition to the target wave mode occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.