Abstract

The clinical implantation of gene therapy is hindered by the limitations of current gene delivery vectors, namely, safety issues regarding viral vectors and low transfection efficacy regarding nonviral vectors. Thus, the design of safe and efficient gene carriers is a key point for the success of such therapies. In addition, when employing genetically modified cells for further applications, the selection of successfully modified cells becomes crucial. To address these issues, we have developed multicomponent nanoparticles composed of poly(s-amino ester) (pBAE) polymers, plasmid DNA, and superparamagnetic iron oxide nanoparticles (SPIONs). Whereas pBAEs were initially employed as safe and biocompatible carriers with improved transfection efficiency, as compared to commercial vectors, SPIONs were used because of their magnetic character that enables cell selection. Surprisingly, the results presented here revealed an unexpected enhancer effect of SPIONs on the transfection efficiency of pBAE/pDNA polyplexe...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.