Abstract
Abstract In the past decades, a wide variety of different superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized. Due to their unique properties, such as big surface-to-volume ratio, superparamagnetism and comparatively low toxicity, they are principally well suited for many different technical and biomedical applications. Meanwhile, there are a numerous synthesis methods for SPIONs, but high requirements for biocompatibility have so far delayed a successful translation into the clinic. Moreover, depending on the planned application, such as for imaging, magnetic drug targeting, hyperthermia or for hybrid materials intended for regenerative medicine, specific physicochemical and biological properties are inevitable. Since a summary of all existing SPION systems, their properties and application is far too extensive, this review reports on selected methods for SPION synthesis, their biocompatibility and biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.