Abstract

Quantitation and in situ monitoring of target mRNA (mRNA) in living cells remains a significant challenge for the chemical and biomedical communities. To quantitatively detect mRNA expression levels in living cells, we have developed DNA-driven gold nanorod coated platinum-upconversion nanoparticle satellite assemblies (termed Au NR@Pt-UCNP satellites) for intracellular thymidine kinase 1 (TK1) mRNA analysis. The nanostructures were capable of recognizing target mRNA in a sequence-specific manner as luminescence of UCNPs was effectively quenched by Au NR@Pt within the assemblies. Following recognition, UCNPs detached from Au NR@Pt, resulting in luminescence restoration to achieve effective in situ imaging and quantifiable detection of target mRNA. The upconversional luminescence intensity of confocal images showed a good linear relationship with intracellular TK1 mRNA ranging from 1.17 to 65.21 fmol/10 μg RNA and a limit of detection (LOD) of 0.67 fmol/10 μg RNA. We believe that our present assay can be broadly applied for detection of endogenous biomolecules at the cellular and tissue levels and restoration of tissue homeostasis in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call