Abstract

We study the effects of quantum fluctuations on a non-coplanar tetrahedral spin structure, which has a scalar chiral order, in the spin-1/2 multiple-spin exchange model with up to the six-spin exchange interactions on a triangular lattice. We find that, in the linear spin-wave approximation, the tetrahedral structure survives the quantum fluctuations because spin waves do not soften in the whole parameter region of the tetrahedral-structure phase evaluated for the classical system. In the quantum corrections to the ground-state energy, sublattice magnetization, and scalar chirality, the effects of the quantum fluctuations are small for the ferromagnetic nearest-neighbor interactions and for the strong five-spin interactions. The six-spin interactions have little effect on the quantum corrections in the tetrahedral-structure phase. This calculation also corrects an error in the previously reported value of scalar chirality for the spin-1/2 multiple-spin exchange model with up to the four-spin exchange interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.