Abstract

We develop the theory of collective modes supported by a Fermi liquid of electrons in pristine graphene. Under reasonable assumptions regarding the electron-electron interaction, all the modes but the plasmon are over-damped. In addition to the $SU(2)$ symmetric spin mode, these include also the valley imbalance modes obeying a $U(1)$ symmetry, and a $U(2)$ symmetric valley spin imbalance mode. We derive the interactions and diffusion constants characterizing the over-damped modes. The corresponding relaxation rates set fundamental constraints on graphene valley- and spintronics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.