Abstract

Advances in magnetoelectric BiFeO3 open the opportunity to commercialize innovative memory devices. Spin-based technology was employed to fabricate the magnetic random access memory (MRAM). The ferroelectric random access memory (FeRAM) based on ferroelectricity was also realized. Both memories have great properties, but unfortunately with some flaws. A new vision was hypothesized to combine both memories to create unlimited memory device. Combination of MRAM and FeRAM means coupling of ferromagnetic-ferroelectric properties in single material. Studies on magnetoelectric BiFeO3 might hold the future for memory devices with thousands of published papers in last years. In this review, we tried to show a comprehensive picture of the large number of studies on multiferroic BiFeO3 including techniques to enhance the properties and remove obstacles. Here, we begin with an overview of spintronics memory devices and multiferroic materials. An organized classification of studies depended on occupation site in BiFeO3 and type of dopant was presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call