Abstract

Physical unclonable function(PUFs) utilize inherent random physical variations of solid-state devices and are a core ingredient of hardware security primitives. PUFs promise more robust information security than that provided by the conventional software-based approaches. While silicon- and memristor-based PUFs are advancing, their reliability and scalability require further improvements. These are currently limited by output fluctuations and associated additional peripherals. Here, highly reliable spintronic PUFs that exploit field-free spin-orbit-torque switching in IrMn/CoFeB/Ta/CoFeB structures are demonstrated. It is shown that the stochastic switching polarity of the perpendicular magnetization of the top CoFeB can be achieved by manipulating the exchange bias directions of the bottom IrMn/CoFeB. This serves as an entropy source for the spintronic PUF, which is characterized by high entropy, uniqueness, reconfigurability, and digital output. Furthermore, the device ensures a zero bit-error-rate under repetitive operations and robustness against external magnetic fields, and offers scalable and energy-efficient device implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.