Abstract

The magnetic response in V 2 O 3 has been investigated using polarised neutron scattering with polarisation analysis. Measurements were carried out at three temperatures corresponding to the antiferromagnetic insulating ground state, the metallic phase and the high temperature metallic phase. At the first order metal insulator transition there is a dramatic change in the magnetic response with the metallic and high temperature metallic phases being characterised by ferromagnetic spatial correlations of the paramagnetic response. The establishment of ferromagnetic correlations at the metal insulator transition accounts for the abrupt jump in the uniform susceptibility. It is proposed that the differentiation of the V-V distances across the edges of VO 6 octahedra is of critical importance for the change in electronic conductivity but also for the establishment of the spatial correlations. The gradual high temperature evolution of the conductivity then occurs by the reduction in the vanadium d overlap brought about by thermal expansion. The first order reduction in atomic volume which occurs on the establishment of the metallic phase results from an instability of the vanadium local moment arising from the change in electronic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.