Abstract

An evaluation study for the direct dipolar electron spin-spin (SS) contribution to the zero-field splitting (ZFS) tensor in electron paramagnetic resonance (EPR) spectroscopy is presented. Calculations were performed on a wide variety of organic systems where the SS contribution to the ZFS dominates over the second-order spin-orbit coupling (SOC) contribution. Calculations were performed using (hybrid) density functional theory (DFT), as well as complete active space self-consistent field (CASSCF) wave functions. In the former case, our implementation is an approximation, because we use the two-particle reduced spin-density matrix of the noninteracting reference system. In the latter case, the SS contribution is approximated by a mean-field method which, nevertheless, gives accurate results, compared to the approximation free computation of the SS part in a CASSCF framework. For the case of the triplet dioxygen molecule, it was shown that restricted open-shell density functional theory (RODFT), as well as CASSCF, can provide accurate spin-spin couplings while spin-unrestricted DFT leads to much larger errors. Furthermore, 15 organic radicals, including several 1,3 and 1,5 diradicals, dinitroxide biradicals, and even a chlorophyll a model system, were examined as test cases to demonstrate the accuracy and efficiency of our approach within a DFT framework. Accurate D values with root-mean-square deviations of 0.0035 cm(-1) were obtained. Furthermore, all trends, including those due to substituent effects, were correctly reproduced. In a different set of calculations, the polyacenes benzene, naphthalene, anthracene, and tetracene were studied. Applying DFT, the absolute D values were noticeably underestimated, but it was possible to correctly reproduce the trend to smaller D values with larger size of the systems. Finally, it was demonstrated that our approach is also well-suited for the study of carbenes. The smaller organic radicals of this work were also studied, through the use of CASSCF wave functions. This was a special advantage in the case of the triplet polyacenes, where the CASSCF approach gave better results than the DFT method. In comparing spin-restricted and spin-unrestricted results, it was shown through a natural orbital analysis and comparison to high-level ab initio calculations that even small amounts of spin polarization introduced by the unrestricted calculations lead to large deviations between the unrestricted Kohn-Sham (UKS) and restricted open-shell Kohn-Sham (ROKS) approaches. It is challenging to understand why the ROKS results show much better correlation with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call