Abstract

Thermal reactions of the closed-shell metal-oxide cluster [TaO3 ](+) with methane were investigated by using FTICR mass spectrometry complemented by high-level quantum chemical calculations. While the generation of methanol and formaldehyde is somewhat expected, [TaO3 ](+) remarkably also has the ability to abstract two hydrogen atoms from methane with the elimination of CH2 . Mechanistically, the generation of CH2 O and CH3 OH occurs on the singlet-ground-state surface, while for the liberation of (3) CH2 , a two-state reactivity scenario prevails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.