Abstract

The interplay between local, repulsive interactions and disorder acting only on one spin orientation of lattice fermions ("spin-dependent disorder") is investigated. The nonmagnetic disorder vs. interaction phase diagram is computed using Dynamical Mean-Field Theory in combination with the geometric average over disorder. The latter determines the typical local density of states and is therefore sensitive to Anderson localization. The effect of spin-dependent disorder is found to be very different from that of conventional disorder. In particular, it destabilizes the metallic solution and leads to a novel spin-selective, localized phase at weak interactions and strong disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.