Abstract

By using density functional theory in combination with non-equilibrium Green's function method, we have investigated the spin-polarized electronic transport properties of four DNA base devices, namely, adenine (A), cytosine (C), guanine (G) and thymine (T). The results show the spin-polarized transport properties can be effectively regulated by adopting different bases, and thymine based device can exhibit high-efficiency spin-filtering, negative differential resistance, spin rectifying behaviors and switching effect by tuning the external magnetic field. We find that the variation in the degree of localization of the frontier molecular orbitals at different biases is responsible for these interesting phenomena. These effects can be explained by the spin-resolved transmission spectrum and the spatial distribution of molecular orbitals around the Fermi level. Our results suggest that thymine base holds great potential application in designing multi-functional spin molecular device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call