Abstract

The charge transfer process in C5+-H collisions has been theoretically studied using the two-center atomic orbital close-coupling method in the energy interval from 0.1 to 300 keV u−1. The interaction of active electron with the projectile ion is represented by model potentials different for the singlet and triplet systems of C4+(1snl) states. The results of the present calculations are compared with other theoretical results and experimental measurements and good agreement is obtained for the total spin-averaged cross sections in the overlapping energy range. For the spin-resolved cross sections, we found that the present total and n-shell electron capture cross sections are also in good agreement with the results of other theoretical studies in the overlapping energy range for both the singlet and triplet cases. Good overall agreement has been obtained with the results of other authors for the nl-state-selective cross sections, except for the capture to 3p and 4p singlet states at the low collision energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.