Abstract
The generation of spin polarization is key in quantum information science and dynamic nuclear polarization. Polarized electron spins with long spin-lattice relaxation times (T1) at room temperature are important for these applications but have been difficult to achieve. We report the realization of spin-polarized radicals with extremely long T1 at room temperature in a metal-organic framework (MOF) in which azaacene chromophores are densely integrated. Persistent radicals are generated in the MOF by charge separation after photoexcitation. Spin polarization of a triplet generated by photoexcitation is successfully transferred to the persistent radicals. Pulse electron spin resonance measurements reveal that the T1 of the polarized radical in the MOF is as long as 214 μs with a relatively long spin-spin relaxation time T2 of the radicals of up to 0.98 μs at room temperature. The achievement of extremely long spin polarization in MOFs with nanopores accessible to guest molecules will be an important cornerstone for future highly sensitive quantum sensing and efficient dynamic nuclear polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.