Abstract

In this paper the quantum transport through an Aharonov–Bohm (AB) quantum-dot-ring with two dot-array arms described by a single-band tight-binding Hamiltonian is investigated in the presence of additional magnetic fields applied to the dot-array arms to produce spin flip of electrons. A far richer interference pattern than that in the charge transport alone is found. Besides the usual AB oscillation the tunable spin polarization of the current by the magnetic flux is a new observation and is seen to be particularly useful in technical applications. The spectrum of transmission probability is modulated by the quantum dot numbers on the up-arc and down-arc of the ring, which, however, does not affect the period of the AB oscillation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call