Abstract

We study the effect of finite width on the ground-state of a spin-polarized electron–electron quantum bilayers (EEBL) system at temperature T=0. Correlations among carriers are treated beyond the static mean-field theories by using the quantum or dynamical version of Singwi, Tosi, Land and Sjölander (qSTLS) theory. Numerical results are presented for the pair-correlation function, the ground-state energy, the static density susceptibility, and the static local-field correction factor as a function of density parameter r sl and interlayer spacing d. Interestingly, we find that the inclusion of finite width lowered the critical density, for the onset of Wigner crystal (WC) ground-state, as compared to the similar recent study of spin-polarized EEBL system without finite width effect. Further, spin-polarization effect is seen to introduce a marked change in the ground-state energy of the EEBL system as compared to the results of unpolarized EEBL system with finite width. Results of ground-state energies are also compared with the recent diffusion Monte Carlo (DMC) and variational Monte Carlo (VMC) simulation studies of spin-polarized EEBL system with zero width.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call