Abstract

Nickel (II) oxide is a prominent candidate for spintronic and spin-caloritronic applications operating at room temperature. Although there are extensive studies on nickel oxide, the roles of magnon- and spin-phonon interactions on thermal transport are not well understood. In the present work, the relationship between spin-phonon interactions and thermal transport is investigated by performing inelastic neutron scattering, time-domain thermoreflectance thermal conductivity measurements, and atomistic thermal transport calculations. Inelastic neutron scattering measurements of the magnon lifetime imply that magnon thermal conductivity is trivial, and so heat is conducted only by phonons. Time-domain thermoreflectance measurements of the thermal conductivity vs. temperature follow T−1.5 in the antiferromagnetic phase. This temperature dependence cannot be explained by phonon-isotope and phonon-defect scattering or phonon softening. Instead, we attribute this to magnon-phonon scattering and spin-induced dynamic symmetry breaking. The spin-phonon interactions are saturated in the paramagnetic phase and lead to a weaker temperature dependence of T−1.0 at 550–700 K. These results reveal the importance of spin-phonon interactions on lattice thermal transport, shedding light on the engineering of functional antiferromagnetic spintronic and spin-caloritronic materials through these interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.