Abstract

We review a class of translational-invariant insulators without spin–orbit coupling, as may be realized in intrinsically spinless systems, e.g., photonic crystals and ultra-cold atoms. Some of these insulators have no time-reversal symmetry as well, i.e., the relevant symmetries are purely crystalline. Nevertheless, topological phases exist which are distinguished by their robust surface modes. To describe these phases, we introduce the notions of (a) a halved-mirror chirality: an integer invariant which characterizes half-mirror planes in the 3D Brillouin zone, and (b) a bent Chern number: the traditional Thouless–Kohmoto–Nightingale–Nijs invariant generalized to bent 2D manifolds. Like other well-known topological phases, their band topology is unveiled by the crystalline analog of Berry phases, i.e., parallel transport across certain non-contractible loops in the Brillouin zone. We also identify certain topological phases without any robust surface modes—they are uniquely distinguished by parallel transport along bent loops, whose shapes are determined by the symmetry group. Finally, we describe the Weyl semimetallic phase that intermediates two distinct, gapped phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.