Abstract

To optimize the writing and reading performance of magnetic random-access memory (MRAM) devices, achieving current-induced spin–orbit torque (SOT) magnetization switching in perpendicularly magnetized full Heusler alloys is vitally important. For conventional SOT-metal bilayer systems, heavy metals (HMs) with a large spin Hall angle (θSH) are generally used for generating a spin current, which is injected into the adjacent ferromagnet (FM) layer and exerts a torque on the magnetization to switch it. However, the large resistivity of generally used HMs such as β-Ta and β-W can increase the Ohmic loss. In this article, we achieve full SOT switching in Heusler alloy Co2FeSi using low-resistivity Pd as a spin current generation source. The critical switching current density is found to be 3.7 × 107 A cm−2, which is in the same order of magnitude as that required for conventional HM/FM systems even though Pd has a smaller θSH than that of generally used HMs. Using harmonic Hall measurements, the damping-like and field-like effective fields per unit current density are estimated to be 56.9 (10−7 Oe A−1 cm2) and 39.8 (10−7 Oe A−1 cm2), respectively. This high efficiency can be attributed to the excellent lattice matching between Co2FeSi and Pd (only 2% mismatch), to a slight Pd diffusion, and possibly to the additional SOTs induced by the in-plane spin component generated in the Co2FeSi layer. Our finding will advance the development of SOT-MRAM devices with both better reading and writing performance.

Highlights

  • In this article, we demonstrate current-induced spin–orbit torque (SOT) magnetization switching in perpendicularly magnetized full Heusler alloy Co2FeSi using Pd as an heavy metals (HMs) layer to generate a spin current

  • The critical switching current density is found to be 3.7 × 107 A cm−2, which is in the same order of magnitude as that required for conventional HM/FM systems even though Pd has a smaller θSH than that of generally used HMs

  • The resistivities of β-Ta (169 μΩ cm)15 and β-W (100–300 μΩ cm)16 are large, which increases the Ohmic loss in SOT-magnetic random-access memory (MRAM) devices

Read more

Summary

Introduction

We demonstrate current-induced SOT magnetization switching in perpendicularly magnetized full Heusler alloy Co2FeSi using Pd as an HM layer to generate a spin current. The critical switching current density is found to be 3.7 × 107 A cm−2, which is in the same order of magnitude as that required for conventional HM/FM systems even though Pd has a smaller θSH than that of generally used HMs. Using harmonic Hall measurements, the damping-like and field-like effective fields per unit current density are estimated to be 56.9 (10−7 Oe A−1 cm2) and 39.8 (10−7 Oe A−1 cm2), respectively.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call