Abstract

The spin−orbit splittings of low-lying states in third-row transition elements were calculated using both an effective core potential (ECP) method within the one-electron (Zeff) approximation and all-electron (AE) methods using three different approaches. The wave functions were obtained using the multiconfiguration self consistent field (MCSCF) method followed by second-order configuration interaction (SOCI) calculations. All calculated results, except for the ones on atomic Ir, are in reasonable agreement with the corresponding experimental observations. The unsatisfactory results for atomic Ir are attributed to the poor theoretical prediction of the adiabatic energy gap between the lowest two 4F states. This gap has an incorrect sign in AE calculations without scalar relativistic corrections, but the gap can be reproduced qualitatively if these corrections are added using the newly developed RESC (relativistic elimination of small components) scheme. As a result, the AE calculations with the RESC appro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.