Abstract

Although it plays a critical role in the photophysics and catalysis of lanthanides, spin-orbit coupling of electrons on individual lanthanide atoms in small clusters is not well understood. The major objective of this work is to probe such coupling of the praseodymium (Pr) 4f and 6s electrons in Pr2O2 and Pr2O2+. The approach combines mass-analyzed threshold ionization spectroscopy and spin-orbit multiconfiguration second-order quasi-degenerate perturbation theory. The energies of six ionization transitions are precisely measured; the adiabatic ionization energy of the neutral cluster is 38 045 (5) cm-1. Most of the electronic states involved in these transitions are identified as spin-orbit coupled states consisting of two or more electron spins. The electron configurations of these states are 4f46s2 for the neutral cluster and 4f46s for the singly charged cation, both in planar rhombus-type structures. The spin-orbit splitting due to the coupling of the electrons on the separate Pratoms is on the order of hundreds of wavenumbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call