Abstract

Electronic band-gap is a key factor in applying two-dimensional (2D) topological insulators into room-temperature quantum spin Hall effect (QSH) spintronic devices. Employing pseudopotential plane-wave first-principles calculations, we investigate spin-orbit coupling (SOC) electronic structures of the novel 2D topological insulator series of antimony (Sb) and bismuth (Bi) monolayers (isolated double atomic layers) functionalized by organic-groups (methyl, amino and hydroxyl). Cohesive energies and phonon frequency dispersion spectra indicate that these organic-group decorated Sb and Bi monolayers possess structural stability in both energetic statics and lattice dynamics. The giant electronic band-gaps adequate for room-temperature applications are attributed to the effective SOC enhancement of group functionalization. The nontrivial topology of these novel 2D monolayer materials is verified by the Z2 invariant derived from wave-function parity and edge-states of their nanoribbons, which is prospective for QSH spintronic devices. The chemical functional group changes the p-orbital component of Fermi level electrons, leading to strong intra-layer spin-orbit coupling, opening a large band-gap of approaching 1.4 eV at Dirac-cone point and resulting in a global indirect band-gap of 0.75 eV, which, even underestimated, is adequate for room-temperature operations. Sb and Bi monolayers functionalized by organic groups are also predicted to maintain stable nontrivial topology under in-layer biaxial strain, which is suitable for epitaxy technology to realize QSH spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call