Abstract

The C 3-symmetric crystal-field potential in the Fe(II)Fe(III) bimetallic oxalates splits the L = 2 Fe(II) multiplet into two doublets and one singlet. In compounds that exhibit magnetic compensation, one of the doublets lies lowest in energy and carries an average orbital angular momentum L z cf that exceeds a threshold value of roughly 0.25. In a range of L z cf , a Jahn–Teller (JT) distortion enhances the splitting of the low-lying doublet and breaks the C 3 symmetry of the bimetallic planes around the ferrimagnetic transition temperature. Due to the competition with the spin-orbit coupling, the JT distortion disappears at low temperatures in compounds that display magnetic compensation. A comparison with recent measurements provides compelling evidence for this inverse, low-temperature JT transition. The size of the JT distortion is estimated using first-principles calculations, which suggest that the long-range ordering of smaller, non- C 3-symmetric organic cations can eliminate magnetic compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.