Abstract

We theoretically investigate a spinor polariton condensate under nonresonant pumping, based on driven-dissipative Gross-Pitaevskii equations coupled to the rate equation of a spin-unpolarized reservoir. We find the homogeneous polariton condensate can transit from the spin-unpolarized phase, where it is linearly polarized, to the spin-polarized phase, where it is elliptically polarized, depending on the cross-spin versus same-spin interactions and the linear polarization splitting. In both phases, we study elementary excitations using Bogoliubov approach, in a regime where the decay rate of total exciton density in reservoir crosses over from the slow to the fast limit. Depending on reservoir parameters, the global-phase mode can be either diffusive or gapped. By contrast, the relative-phase mode always possesses a gapped energy, undamped in the spin-unpolarized phase but weakly damped in the spin-polarized phase. In the spin-unpolarized phase, both modes are linearly polarized despite pumping and decay. However, in the spin-polarized phase, the mode polarization can be significantly affected by the reservoir and depends strongly on the circular polarization degree of the condensate. Interestingly, we demonstrate that the `ghost' branch of the Bogoliubov spectrum of the relative-phase mode can be visualized in the photoluminescence emission, distinguishable from that of the global-phase mode and thus allowing for experimental observation, when the spinor polariton condensate is elliptically polarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call