Abstract
Fully inorganic lead halide perovskite nanocrystals (NCs) are of interest for optoelectronic and light-emitting devices because of their photoluminescence (PL) emission properties, which can be tuned/optimized by (I) surface passivation and (II) doping. (I) Surface passivation of the NC affects PL capabilities, as an underpassivated surface can introduce trap states, which reduces PL quantum yields. (II) Doping NCs and quantum dots with transition-metal ions provides stable optical transitions. Doping perovskite NCs with Mn2+ ions provides high-intensity 4T1 → 6A1 optical transitions in addition to the bright intrinsic NC emission. Here, we use noncollinear density functional theory (DFT) to investigate the roles of surface passivation and doping on the PL emission stability of perovskite NCs. Two models are investigated: (i) a pristine NC and (ii) a NC doped with the Mn2+ ion. The noncollinear DFT includes spin–orbit coupling (SOC) between different spin states and produces spin adiabatic molecular orbit...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.