Abstract

We present a generalization of the spinor and twistor geometry for on (pseudo) Riemannian manifolds enabled with nonholonomic distributions or for Finsler-Cartan spaces modelled on tangent Lorentz bundles. Nonholonomic (Finsler) twistors are defined as solutions of generalized twistor equations determined by spin connections and frames adapted to nonlinear connection structures. We show that the constructions for local twistors can be globalized using nonholonomic deformations with "auxiliary" metric compatible connections completely determined by the metric structure and/or the Finsler fundamental function. We explain how to perform such an approach in the Einstein gravity theory formulated in Finsler like variables with conventional nonholonomic 2+2 splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.