Abstract

Nowadays we believe that a typical galaxy contains about 107 stellar-mass black holes and a single super-massive black hole at its center. According to general relativity, these objects are characterized solely by their mass M and by their spin parameter a*. A fundamental limit for a black hole in general relativity is the Kerr bound |a*| ⩽ 1, but the accretion process can spin it up to a* ≈ 0.998. If a compact object is not a black hole, the Kerr bound does not hold and in this letter I provide some evidences suggesting that the accretion process could spin the body up to a* > 1. While this fact should be negligible for stellar-mass objects, some of the super-massive objects at the center of galaxies may actually be super-spinning bodies exceeding the Kerr bound. Such a possibility can be tested by gravitational wave detectors like LISA or by sub-millimeter very long-baseline interferometry facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.