Abstract

Scalar boson stars and Dirac stars are solitonic solutions of the Einstein–Klein-Gordon and Einstein-Dirac classical equations, respectively. Despite the different bosonic vs. fermionic nature of the matter field, these solutions to the classical field equations have been shown to have qualitatively similar features [1]. In particular, for spinning stars the most fundamental configurations can be in both cases toroidal, unlike spinning Proca stars that are spheroidal [2]. In this paper we gauge the scalar and Dirac fields, by minimally coupling them to standard electromagnetism. We explore the impact of the gauge coupling on the resulting solutions. One of the most relevant difference concerns the gyromagnetic ratio, which for the scalar stars takes values around 1, whereas for Dirac stars takes values around 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.