Abstract

Recently observed quantum emitters in hexagonal boron nitride (hBN) membranes have a potential for achieving high accessibility and controllability thanks to the lower spatial dimension. Moreover, these objects naturally have a high sensitivity to vibrations of the hosting membrane due to its low mass density and high elasticity modulus. Here, we propose and analyze a spin-mechanical system based on color centers in a suspended hBN mechanical resonator. Through group theoretical analyses and abinitio calculation of the electronic and spin properties of such a system, we identify a spin doublet ground state and demonstrate that a spin-motion interaction can be engineered, which enables ground-state cooling of the mechanical resonator. We also present a toolbox for initialization, rotation, and readout of the defect spin qubit. As a result, the proposed setup presents the possibility for studying a wide range of physics. To illustrate its assets, we show that a fast and noise-resilient preparation of a multicomponent cat state and a squeezed state of the mechanical resonator is possible; the latter is achieved by realizing the extremely detuned, ultrastrong coupling regime of the Rabi model, where a phonon superradiant phase transition is expected to occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.