Abstract

We present analytical bound state solutions of the spin-zero particles in the Klein-Gordon (KG) equation in presence of an unequal mixture of scalar and vector Woods-Saxon potentials within the framework of the approximation scheme to the centrifugal potential term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed forms using a parametric Nikiforov-Uvarov (NU) method. Our numerical energy eigenvalues demonstrate the existence of inter-dimensional degeneracy amongst energy states of the KG-Woods-Saxon problem. The dependence of the energy levels on the dimension D is numerically discussed for spatial dimensions D = 2 - 6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.