Abstract

The interaction between succinate-ubiquinone and ubiquinol-cytochrome c reductases in the purified, dispersed state and in embedded phospholipid vesicles was studied by differential scanning calorimetry and by electron paramagnetic resonance (EPR). When the purified, detergent-dispersed succinate-ubiquinone reductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase undergo thermodenaturation, they show an endothermic transition. However, when these isolated electron-transfer complexes are embedded in phospholipid vesicles, they undergo exothermodenaturation. The energy released could result from the collapse of the strained interaction between unsaturated fatty acyl groups of phospholipids and an exposed area of the complex formed by removal of interacting proteins. The exothermic enthalpy change of thermodenaturation of a protein-phospholipid vesicle containing both succinate-ubiquinone and ubiquinol-cytochrome c reductases was smaller than that of a mixture of protein-phospholipid vesicles formed from the individual electron-transfer complexes. This suggests specific interaction between succinate-ubiquinone reductase and ubiquinol-cytochrome c reductase in the membrane. This idea is supported by saturation transfer EPR studies showing that the rotational correlation time of spin-labeled ubiquinol-cytochrome c reductase is increased when mixed with succinate-ubiquinone reductase prior to embedding in phospholipid vesicles. These results indicate that succinate-ubiquinone reductase and ubiquinol-cytochrome c reductase are indeed present in the membrane as a supermacromolecular complex. No such supermacromolecular complex is detected between NADH-ubiquinone and ubiquinol-cytochrome c reductases or between succinate-ubiquinone and NADH-uniquinone reductases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.