Abstract
In recent years, Spin-Transfer Torque Random Access Memory (STT-RAM) has attracted significant attentions from both industry and academia due to its attractive attributes such as small cell area and non-volatility. However, long switching time and large programming energy of Magnetic Tunneling Junction (MTJ) continue being major challenges in STT-RAM designs. In order to overcome this problem, a Spin-Hall Effect (SHE) assisted STT-RAM structure (SHE-RAM) has been recently invented. In this work, we investigate two possible SHE-RAM designs from the aspects of two different write access operations, namely, High Density SHE-RAM and Disturbance Free SHE-RAM, respectively. In High Density SHE-RAM, SHE current is shared by the entire bit line. Such a structure removes the SHE control transistor from each SHE-RAM cell and hence, substantially reduces the memory cell area. In Disturbance Free SHE-RAM, one memory cell contains two transistors to remove the disturbance to the unselected bits and eliminate the possible erroneous flipping of the bits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.