Abstract

We analyze the ability of spin-flip time dependent density functional theory (TD-DFT) to uniformly describe excited states of single, double, and mixed excitation character in closed-shell molecular systems, using the polyene oligomers as a primary test case. The results of comparison between conventional and spin-flip TD-DFT and with correlated ab initio methods indicate that spin-flip TD-DFT provides a more consistent description of the ordering and relative positions of the excited states than conventional TD-DFT provided a suitable exchange-correlation functional is used in the calculations. It is found that spin-flip TD-DFT provides a physically appealing picture of excitation processes which involve one or two electrons, as it captures their most important features and facilitates a more uniform description of excited states with different character. This makes spin-flip TD-DFT a promising approach for general modeling of excited states and spectra of medium and large size molecules, which exhibit low-lying excited states with strong double excitation character.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.