Abstract

We theoretically investigate the spin filtering transport of double parallel quantum wires (QWs) side-coupled to a graphene sheet and sandwiched between two ferromagnetic (FM) leads. The dependences of the wire-graphene coupling strength, wire-wire coupling strength, as well as the spin polarization of the ferromagnetic leads are studied. It is found that the wire-graphene coupling strength tends to reduce the current and the wire-wire coupling strength can first reinforce and then decrease the current. The spin polarization strength has an enhanced (identical) effect on the current under the parallel (anti-parallel) alignment of the FM leads, which gives rise to an obvious spin-filter and tunnel magnetoresistance (TMR) effect. Our results suggest that such a theoretical model can stimulate some experimental investigations about the spin-filter devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call