Abstract

Dendritic spines form most excitatory synaptic inputs in neurons and these spines are altered in many neurodevelopmental and neurodegenerative disorders. Reliable methods to assess and quantify dendritic spines morphology are needed, but most existing methods are subjective and labor intensive. To solve this problem, we developed an open-source software that allows segmentation of dendritic spines from 3D images, extraction of their key morphological features, and their classification and clustering. Instead of commonly used spine descriptors based on numerical metrics we used chord length distribution histogram (CLDH) approach. CLDH method depends on distribution of lengths of chords randomly generated within dendritic spines volume. To achieve less biased analysis, we developed a classification procedure that uses machine-learning algorithm based on experts’ consensus and machine-guided clustering tool. These approaches to unbiased and automated measurements, classification and clustering of synaptic spines that we developed should provide a useful resource for a variety of neuroscience and neurodegenerative research applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call