Abstract

Patients with low back pain and asymptomatic individuals were evaluated while performing controlled and free-dynamic lifting tasks in a laboratory setting. To evaluate how low back pain influences spine loading during lifting tasks. An important, yet unresolved, issue associated with low back pain is whether patients with low back pain experience spine loading that differs from that of individuals who are asymptomatic for low back pain. This is important to understand because excessive spine loading is suspected of accelerating disc degeneration in those whose spines are damaged already. In this study, 22 patients with low back pain and 22 asymptomatic individuals performed controlled and free-dynamic exertions. Trunk muscle activity, trunk kinematics, and trunk kinetics were used to evaluate three- dimensional spine loading using an electromyography- assisted model in conjunction with a new electromyographic calibration procedure. Patients with low back pain experienced 26% greater spine compression and 75% greater lateral shear (normalized to moment) than the asymptomatic group during the controlled exertions. The increased spine loading resulted from muscle coactivation. When permitted to move freely, the patients with low back pain compensated kinematically in an attempt to minimize external moment exposure. Increased muscle coactivation and greater body mass resulted in significantly increased absolute spine loading for the patients with low back pain, especially when lifting from low vertical heights. The findings suggest a significant mechanical spine loading cost is associated with low back pain resulting from trunk muscle coactivation. This loading is further exacerbated by the increases in body weight that often accompany low back pain. Patient weight control and proper workplace design can minimize the additional spine loading associated with low back pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.