Abstract

It is essential to precisely model the spindle thermal error due to its dramatic influence on the machining accuracy. In this paper, the deep learning convolutional neural network (CNN) is used to model the axial and radial thermal errors of horizontal and vertical spindles. Unlike the traditional CNN model that relies entirely on thermal images, this model combines the thermal image with the thermocouple data to fully reflect the temperature field of the spindle. After pre-processing and data enhancement of the thermal images, a multi-classification model based on CNN is built and verified for accuracy and robustness. The experimental results show that the model prediction accuracy is approximately 90 %–93 %, which is higher than the BP model. When the spindle rotation speed changes, the model also shows good robustness. Real cutting tests show that the deep learning model has good applicability to the spindle thermal error prediction and compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call