Abstract

The development of high-speed milling technology provides an effective processing method for titanium alloy curved surface with high quality, and the spindle speed is an important machining parameter for the high-speed milling of titanium alloy curved surface. The variation of the geometric features of the titanium alloy curved surface results in the sharp fluctuation of the cutting force as well as the vibration of machine tool, which not only makes a severe impact on the surface machining quality and the tool life but also greatly affects the efficiency of the high-speed milling. An experimental study is carried out to determine the spindle speed for high-speed milling of the titanium alloy curved surface based on the cutting force. The experimental results indicate that in high-speed milling process, the cutting force is associated with the geometric feature of the curved surface and the change of cutting force is relatively smooth when the spindle speed is in the range from 9000 to 13,000 rpm for the machining of titanium alloy curved surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.