Abstract

Using the Bogoliubov-de Gennes formalism, we investigate the charge and spin-dependent thermoelectric effects in graphene-based superconductor junctions. The results demonstrate that despite normal-superconductor junctions, there is a temperature-dependent spin thermopower in both the graphene-based ferromagnetic-superconductor and ferromagnetic-Rashba spin-orbit region-superconductor junctions. It is also shown that in the presence of Rashba spin-orbit interaction, the charge and spin-dependent Seebeck coefficients reach their maximum up to 3.5 kB/e and 2.5 kB/e, respectively. Remarkably, these coefficients have a zero-point critical value with respect to the magnetic exchange field and chemical potential. This effect disappears when the Rashba coupling is absent. These results suggest that graphene-based superconductors can be used in spin-caloritronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call