Abstract

Coherent spin-dependent electron transport is investigated in three conditions: (1) a C60 molecule is connected to two ferromagnetic (FM) electrodes symmetrically, (2) a C59N molecule is connected to two FM electrodes symmetrically and (3) a C59N molecule is connected to two FM electrodes asymmetrically. This work is based on a single-band tight-binding model Hamiltonian and the Green’s function approach with the Landauer–Buttiker formalism. Electrodes used in this study are semi-infinite FM electrodes with finite cross-section. Obvious rectification effect is observed in the C59N molecule which is connected to the FMelectrodes asymmetrically. This effect is more in the P alignment of FM electrodes than in AP alignment of FM electrodes. This study indicates that the rectification behaviour is due to the asymmetry in molecule and junctions. Also in this investigation tunnel magnetoresistance (TMR) is calculated for these molecules. Asymmetry is observed in TMR of C59N which is coupled to the electrodes asymmetrically due to asymmetric junctions, but TMR of C60 is symmetric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.