Abstract
Room-temperature spin-dependent recombination in a series of GaAs1−x Nx solid solutions (x = 2.1, 2.7, 3.4%) has been observed as manifested by a more than threefold decrease in intensity of the edge photoluminescence upon switching from circular to linear polarization of the exciting light or upon the application of a transverse magnetic field (∼300 G). The interband absorption of the circularly polarized light is accompanied by the spin polarization of conduction electrons, which reaches 35% with an increase in the pumping level. The observed effects are explained in terms of the dynamic polarization of deep paramagnetic centers and the spin-dependent trapping of conduction electrons on these centers. The electron spin relaxation time, as estimated from the dependence of the edge photoluminescence depolarization in the transverse magnetic field (the Hanle effect) on the pumping intensity, is on the order of 1 ns. According to the adopted theory, the electron spin relaxation time in the presence of spin-dependent recombination is determined by a slow spin relaxation of localized electrons. The sign (positive) of the g factor of localized electrons has been experimentally determined from the direction of the magnetic-field-induced rotation of their average spin observed in the three GaAsN crystals studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental and Theoretical Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.