Abstract

In this paper, density functional theory (DFT) calculations are performed to investigate the spin-dependent mechanical, electronic, magnetic, optical, and thermal transport properties of rare-earth-based chalcogenides MgPr2X4 (X = S, Se) spinels. The mechanical properties are obtained by employing the modified Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol GGA). Also, the modified Becke and Johnson (mBJ) potential is engaged in examining the electronic, magnetic, optical, and transport properties. Structural stability in the ferromagnetic (FM) phase is confirmed by calculating the energy difference between the FM and non-magnetic states. Besides, the formation energies are computed for thermodynamic stability. The strong hybridization near the Fermi level comes from chalcogenides 2p-states and f-states of rare-earth metals, which results in the total magnetic moments. The in-depth optical properties are evaluated in terms of dielectric constant and refraction. Lastly, electronic thermal coefficients, such as Seebeck coefficient, electrical and thermal conductivity, and power factor, are also probed and suggested studied spinels as promising sustainable energy materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call