Abstract

The spin-dependent tunneling phenomenon in symmetric and asymmetric semiconductor heterostructures at zero magnetic field is studied theoretically on the base of a single conduction band and spin-dependent boundary conditions approach. It is shown that the spin-orbit splitting in the dispersion relation for the electrons in ${A}_{\mathrm{III}}{B}_{\mathrm{V}}$ semiconductor quantum-tunneling structures can provide a dependence of the tunneling transmission probability on the electron's spin polarization. The dependence is calculated and discussed for different kinds of tunnel heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.