Abstract

A crystal engineering approach is used to stabilize a radical anion in the crystalline state and to modulate the separation distance within π-stacks of anion radicals. Alkali metal salts of 2,3-dicyano-5,6-dichlorosemiquinone (C8Cl2N2O2, DDQ∙- radical anions were prepared and their crystal structures determined: LiDDQ·2H2O·(CH3)2CO, RbDDQ·2H2O and CsDDQ·2H2O. In these structures, stacked dimers of radical anions are formed within π-stacked columns. Within the stacked dimers, interplanar separation distances are significantly shorter than the sum of the van der Waals radii for two C atoms; the shortest is 2.812 Å for the Li salt and the longest is 2.925 Å for the Cs salt. Diamagnetic character, observed by electron paramagnetic resonance spectroscopy, indicates spin-coupling of the unpaired electrons within the radical anion dimer. The electron-rich cyano substituents on DDQ∙- influence the electron redistribution within the ring skeleton. The crystalline compounds are also characterized by IR spectroscopy, complemented by quantum-chemical calculations based on both isolated and periodic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.