Abstract

We study the spin-charge separation in a Kondo-like model for an impurity with a spin and a charge (isospin) degree of freedom coupled to a single conduction channel (the ``spin-charge'' Kondo model). We show that the spin and charge Kondo effects can occur simultaneously at any coupling strength. In the continuum (wide-band or weak coupling) limit, the Kondo screening in each sector is independent, while at finite bandwidth and strong coupling the lattice effects lead to a renormalization of the effective Kondo exchange constants; nevertheless, universal spin and charge Kondo effects still occur. We find similar behavior in the two-impurity Anderson model with positive and negative electron-electron interaction and in the two-impurity Anderson-Holstein model with a single phonon mode. We comment on the applicability of such models to describe the conductance of deformable molecules with a local magnetic moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.