Abstract

The present study explored a link between spinal 5-HT7 and adenosine A1 receptors in antinociception by systemic amitriptyline in normal and adenosine A1 receptor knock-out mice using the 2% formalin test. In normal mice, antinociception by systemic amitriptyline 3mg/kg was blocked by intrathecal administration of the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) 10nmol. Blockade was also seen in adenosine A1 receptor +/+ mice, but not in −/− mice lacking these receptors. In both normal and adenosine A1 receptor +/+ mice, the selective 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB269970) 3μg blocked antinociception by systemic amitriptyline, but it did not prevent antinociception in adenosine A1 receptor −/− mice. In normal mice, flinching was unaltered when the selective 5-HT7 receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS-19) 20μg was administered alone, but increased when co-administered intrathecally with DPCPX 10nmol or SB269970 3μg. Intrathecal AS-19 decreased flinching in adenosine A1 receptor +/+ mice compared to −/− mice. Systemic amitriptyline appears to reduce nociception by activating spinal adenosine A1 receptors secondarily to 5-HT7 receptors. Spinal actions constitute only one aspect of antinociception by amitriptyline, as intraplantar DPCPX 10nmol blocked antinociception by systemic amitriptyline in normal and adenosine A1 receptor +/+, but not −/− mice. Adenosine A1 receptor interactions are worthy of attention, as chronic oral caffeine (0.1, 0.3g/L, doses considered relevant to human intake levels) blocked antinociception by systemic amitriptyline in normal mice. In conclusion, adenosine A1 receptors contribute to antinociception by systemic amitriptyline in both spinal and peripheral compartments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.