Abstract

It has been shown earlier using sympathetic reflexes and anatomic techniques that preganglionic neurons controlling different effectors occupy wide and overlapping ranges of adjacent segments in the spinal cord (cardiac: T1-T7, vertebral: T2-T8). Because, however, the majority of preganglionic neurons are silent at resting states, the present study was designed to estimate the segmental map of subsets of these neurons including only those active at rest using simultaneous recordings from the inferior cardiac and vertebral nerves, under chloralose-urethan or urethan anesthesia. In 22 cats, thoracic white rami T1-T8 were cut in a sequential manner. Three-minute-long data segments were recorded between sectionings and analyzed in the frequency domain using the fast Fourier transform. We found that cardiac and vertebral active maps involved segments T3-T5 and T4-T8, respectively. In individual experiments, however, most of the power of rhythmic activity originated from only one or two segments and the dominant segments for the two nerves never overlapped. Moreover, the separation between dominant segments generating cardiac and vertebral nerve discharges was wider and the distribution of tonically active preganglionic neurons projecting to each nerve was narrower under urethan than chloralose-urethan anesthesia. We conclude that the proportion of active to quiescent preganglionic neurons regulating cardiac and vertebral nerve discharges varies from spinal segment to segment and that active neurons projecting to these nerves are nonoverlapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.