Abstract

Spinal scoliosis, a prevalent spinal deformity impacting both physical and mental well-being, has a significant genetic component, though the exact pathogenic mechanisms remain elusive. This review offers a comprehensive exploration of current research on embryonic spinal development, focusing on the genetic and biological intricacies governing axial elongation and straightening. Zebrafish, a vital model in developmental biology, takes a prominent role in understanding spinal scoliosis. Insights from zebrafish studies illustrate genetic and physiological aspects, including notochord development and cerebrospinal fluid dynamics, revealing the anomalies contributing to scoliosis. In this review, we acknowledge existing challenges, such as deciphering the unique dynamics of human spinal development, variations in physiological curvature, and disparities in cerebrospinal fluid circulation. Further, we emphasize the need for caution when extrapolating findings to humans and for future research to bridge current knowledge gaps. We hope that this review will be a beneficial frame of reference for the guidance of future studies on animal models and genetic research for spinal scoliosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.