Abstract

Intraoperative remifentanil anesthesia exaggerates postoperative pain sensitivity. Recent studies recapitulate the significance of protein kinase Mζ in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated pathologic pain. Kalirin-7, a Rho guanine nucleotide exchange factor, coordinates AMPA receptor trafficking and dendritic spine plasticity. This study examines whether protein kinase Mζ and Kalirin-7 contribute to remifentanil-induced postincisional hyperalgesia via AMPA receptor. Plantar incision was performed 10 min after the start of remifentanil infusion (1 µg · kg · min for 60 min). Paw withdrawal threshold (primary outcome), spinal protein kinase Mζ activity, Kalirin-7 expression, AMPA receptor trafficking, and spine morphology were assessed. Protein kinase Mζ inhibitor and Kalirin-7 knockdown by short hairpin RNA elucidated the mechanism and prevention of hyperalgesia. Whole-cell patch-clamp recording analyzed the role of protein kinase Mζ in spinal AMPA receptor-induced current. Remifentanil reduced postincisional paw withdrawal threshold (mean ± SD, control vs. hyperalgesia, 18.9 ± 1.6 vs. 5.3 ± 1.2 g, n = 7) at postoperative 48 h, which was accompanied by an increase in spinal protein kinase Mζ phosphorylation (97.8 ± 25.1 vs. 181.5 ± 18.3%, n = 4), Kalirin-7 production (101.9 ± 29.1 vs. 371.2 ± 59.1%, n = 4), and number of spines/10 µm (2.0 ± 0.3 vs. 13.0 ± 1.6, n = 4). Protein kinase Mζ inhibitor reduced remifentanil-induced hyperalgesia, Kalirin-7 expression, and GluA1 trafficking. Incubation with protein kinase Mζ inhibitor reversed remifentanil-enhanced AMPA receptor-induced current in dorsal horn neurons. Kalirin-7 deficiency impaired remifentanil-caused hyperalgesia, postsynaptic GluA1 insertion, and spine plasticity. Selective GluA2-lacking AMPA receptor antagonist prevented hyperalgesia in a dose-dependent manner. Spinal protein kinase Mζ regulation of GluA1-containing AMPA receptor trafficking and spine morphology via Kalirin-7 overexpression is a fundamental pathogenesis of remifentanil-induced hyperalgesia in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call